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Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by
localizing to the tumor and decreasing oxidative stress and angiogenesis☆
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Abstract

It has been demonstrated in various animal models that the oral administration of green tea (GT) extracts in drinking water can inhibit tumor growth, but the
effects of brewed GT on factors promoting tumor growth, including oxidant damage of DNA and protein, angiogenesis and DNA methylation, have not been
tested in an animal model. To explore these potential mechanisms, brewed GT was administered instead of drinking water to male severe combined
immunodeficiency (SCID) mice with androgen-dependent human LAPC4 prostate cancer cell subcutaneous xenografts. Tumor volume was decreased
significantly in mice consuming GT, and tumor size was significantly correlated with GT polyphenol (GTP) content in tumor tissue. There was a significant
reduction in hypoxia-inducible factor 1-alpha and vascular endothelial growth factor protein expression. GT consumption significantly reduced oxidative DNA
and protein damage in tumor tissue as determined by 8-hydroxydeoxyguanosine/deoxyguanosine ratio and protein carbonyl assay, respectively. Methylation is
known to inhibit antioxidative enzymes such as glutathione S-transferase pi to permit reactive oxygen species promotion of tumor growth. GT inhibited tumor
5-cytosine DNA methyltransferase 1 mRNA and protein expression significantly, which may contribute to the inhibition of tumor growth by reactivation of
antioxidative enzymes. This study advances our understanding of tumor growth inhibition by brewed GT in an animal model by demonstrating tissue
localization of GTPs in correlation with inhibition of tumor growth. Our results suggest that the inhibition of tumor growth is due to GTP-mediated inhibition of
oxidative stress and angiogenesis in the LAPC4 xenograft prostate tumor in SCID mice.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous studies in cell culture and in animal models
demonstrate that either green tea extract (GTE) or purified (−)-
epigallocatechin gallate (EGCG) [1–3] can inhibit tumor cell
proliferation and xenograft tumor growth. Meta-analyses of epide-
miological studies demonstrate a small but significant reduction in
the risk of breast, lung and stomach cancer in individuals consuming
brewed green tea [4–6]. Consumption of 600 mg/day of a GTE by
men with high-grade prostate intraepithelial neoplasia (PIN)
significantly delayed the progression of PIN to prostate cancer
(CaP) [7]. The active phytochemicals in GT are the green tea
polyphenols (GTPs), also known as flavan-3-ols, including (−)-
epigallocatechin (EGC), EGCG, (−)-epicatechin (EC) and (−)-
epicatechin-3-gallate (ECG). While EGCG is the most active and
abundant polyphenol, we have previously demonstrated that
natural products exert their beneficial effects based on the sum of
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the multiple mixed components [8]. GTPs can exhibit antioxidant as
well as prooxidant activity in cell culture. The antioxidant activity of
GTPs derives from their direct radical scavenging activity via
electron transfer from hydroxyl groups in the polyphenol ring and
indirectly through activation of the nuclear antioxidant response
element via the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
transcription factor [9,10]. Prooxidant activity in vitro results from
the autooxidation and dimerization of EGCG and EGC to form homo-
and heterodimers in an alkaline environment with concurrent
formation of hydrogen peroxide [11]. Mitochondrial respiratory
chain metabolism and a number of enzymatic reactions including
those involving NAD(P)H oxidases, xanthine oxidase, myeloperox-
idase, cyclooxygenase and lipoxygenase can serve as endogenous
sources of reactive oxygen species (ROS) [12,13]. Macrophage
infiltration in CaP has been identified universally in prostatectomy
tissue [14]. In animal models, macrophage infiltration has been
demonstrated in orthotopically transplanted human prostate tumors
[13]. Inflammatory macrophages release ROS, cytokines, chemokines
and prostaglandins which can lead to tissue remodeling and
angiogenesis [14,15].

Prostate tumors are characterized by a down-regulation of key
antioxidant enzymes such as glutathione S-transferase pi (GSTp1)
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andmanganese superoxide dismutase through epigenetic silencing of
CpG island hypermethylation [16–18], suggesting that tumor cell
proliferation is dependent on a minimal level of ROS.

EGCG has been shown to inhibit 5-cytosine DNA methyltransfer-
ase 1 (DNMT1) [19], leading to demethylation of the CpG islands in
the promoters and the reactivation of methylation-silenced genes
such as p16INK4a, retinoic acid receptor beta, O6-methylguanine
methyltransferase, humanmutL homolog 1 and GSTp1 [20]. Since CaP
is commonly associated with hypermethylation and silencing of
GSTp1, it is possible that GT at a cellular level may reactivate GSTp1
[21,22], resulting in tumor growth inhibition by reducing the
concentration of ROS needed to maintain tumor growth.

Most prior investigations of the mechanisms underlying the
cancer preventive activities of GT have utilized either EGCG alone or
decaffeinated GTEs highly enriched in EGCG [23]. The objective of the
present study was to administer brewed GT in drinking water to male
severe combined immunodeficiency (SCID) mice bearing a human
prostate cancer xenograft (LAPC4) to mimic human tea consumption
and to determine the effects on tumor growth, intratumoral GTPs,
macrophage infiltration, oxidant stress, angiogenesis, and damage to
tumor DNA and protein.

2. Methods and materials

2.1. Green tea intervention

Green tea was brewed every 3 days by steeping one tea bag in 250 ml of boiling
water (pH 3) for 5 min. Tea bags (Authentic Green Tea) were generously provided by
Celestial Seasonings (Boulder, CO, USA). The stability of GTP was tested and was
stable for 3 days. The GTP composition of the brewed green tea inmg/Lwas as follows:
EGC 202±11, EGCG 397±28, EC 52±5, ECG 62±5 and catechin 8±2.

2.2. Animal studies

All procedures carried out in mice were approved by the UCLA Animal Research
Committee. Male SCID mice (Charles River Laboratories) were bred in a pathogen-free
colony [24], where they were housed in groups of five per cage and fed a sterilized AIN-
93G diet (DYETS, Inc., Bethlehem, PA, USA) and water. The brewed GT was provided in
the same manner as drinking water. Androgen-dependent LAPC4 prostate cancer cells
mixed in 0.1 ml of matrigel (5×105 LAPC4 cells per animal; gift from Dr. Charles
Sawyers) were implanted subcutaneously into the flank of 5-week-old SCID mice. A
small preliminary experiment (experiment 1) was performed to determine oxidative
DNA damage in LAPC4 xenograft tumors in mice drinking water ad libitum. Control
mice were left intact, and intervention mice were surgically castrated when tumors
were palpable (about 4 weeks after inoculation) (n=5). When tumors reached a
volume of 1 cm3, mice were sacrificed, and tumors and the prostate gland (all four
lobes) were removed and frozen for later oxidative DNA damage determination. In
experiment 2, to test the chemopreventive effect of brewed green tea, GT was
administered in drinking water for 13 weeks (n=5 per group) orally 7 days per week
starting 2 weeks after LAPC4 tumor cell inoculation. Tumor size was measured with
calipers three times a week starting at day 7. Tumor volume was calculated using the
formula length×width×height×0.5236 [25]. Mice in the control group were sacrificed
after 8 weeks postinoculation and mice in the tea group 13 weeks after the inoculation
to obtain serum samples, liver, lung, kidney and tumor tissue. Tumors were excised and
rinsed in cold phosphate-buffered saline. A 2-mm slice was cut in longitudinal direction
from the center of the tumor and transferred into a tissue cassette, fixed in 10% neutral
buffered formalin for 12 h and transferred to 70% alcohol for immunohistochemistry
[26]. The remaining tumor tissue was cut into six to eight sections, carefully labeled
according to the location in the tumor (outside, inside, center) and immediately frozen
in liquid nitrogen together with other tissues for further analyses. The GT intervention
study using brewed GT was performed twice with n=5 per group in each experiment.
The outcomes were very similar in both experiments.

2.3. Immunohistochemistry of microvessel density and macrophage presence

Paraffin-embedded sections were cut at 4-μm thickness, and paraffin was removed
with xylene and rehydrated through graded ethanol. Endogenous peroxidase activity
was blocked with 3% hydrogen peroxide in methanol for 10 min. Heat-induced antigen
retrieval, 95°C for 25 min (microvessel density), and proteolytic-induced epitope
retrieval were carried out with proteinase K (Dako, S3020, Carpinteria, CA, USA) at
37°C for 10 min (F4/80). To quantify microvessel density, goat polyclonal Pecam-1
(CD31) (Santa Cruz, sc-1506, Santa Cruz, CA, USA) primary antibody at 1:200 dilution
for 1 h and F4/80 primary antibody (Serotec MCA497b, Raleigh, NC, USA) at 1:50
dilution overnight at 4°C followed by 30 min with secondary polyclonal rabbit anti-
goat immunoglobulins/biotinylated (Dako, E0466, Carpinteria, CA, USA) at 1:200 were
used. The signal was detected using the mouse DAKO horseradish peroxidase EnVision
kit (DAKO) and anti-rabbit HRP polymer and visualized with the diaminobenzidine
reaction. The sections were counterstained with hematoxylin. Number of vessels was
manually counted in 20 fields at 400× magnification using the Ariol SL-50 automated
slide scanner (Applied Imaging, San Jose, CA, USA) at the Translational Pathology Core
Laboratory, Department of Pathology and Laboratory Medicine, David Geffen School of
Medicine at UCLA. The presence of F4/80-stained macrophages was assessed by
semiquantitative scoring of staining intensity of the cells grouped into five grades: 0,
lack of expression; 1+, low expression in less than 10% of cells; 2+, low to moderate
expression in 11% to 30%; 3+, moderate to strong staining in 31% to 50%; and 4+,
strong expression in 50% or more.
2.4. Western blot analysis of protein expression in mouse tumors

Fifty micrograms of protein was used for the analysis of hypoxia-inducible factor
1-alpha (HIF-1α), vascular endothelial growth factor (VEGF) and DNMT1. Protein was
separated on a 4%–20% Tris-HCl gel. Separated proteins were electrotransferred to
nitrocellulose membranes and blocked in Tris-buffered saline with 0.1% Tween 20 and
5% nonfat milk for 1 h at room temperature. Membranes were incubated with primary
antibody against HIF-1α (sc-10790), VEGF (sc-152) or DNMT1 (sc-20701, Santa Cruz)
at a dilution of 1:100 overnight at 4°C. Protein was visualized and analyzed using a
ChemiDoc XRS (Bio-Rad Laboratories) chemiluminescent detection and imaging
system. After stripping the membrane, monoclonal antibody to β-actin or GAPDH was
applied as loading control.
2.5. Oxidative DNA and protein damage

DNA was extracted from 80–100 mg of tumor tissue by the phenol/chloroform/i-
soamyl alcohol extraction method described by Hofer et al. [27]. One hundred
micrograms of DNAwas digested according to Huang et al. [28], and the concentrations
of 8-hydroxydeoxyguanosine (8-oxo-dG) and total deoxyguanosine (dG) were
determined by high-performance liquid chromatography (HPLC) using Coulochem II
electrochemical detection (ESA, Chelmsford, MA, USA) as described previously [29].
Protein oxidation was determined by concentration of protein carbonyl using the
Cayman protein carbonyl assay kit (Cayman Chemical Company, Ann Harbor, MI, USA)
according to manufacturer's instructions.
2.6. Tea polyphenol analysis

One hundred fifty milligrams of the tumor tissue was homogenized in 200 μl of 2%
ascorbic acid solution on ice and transferred to 2-ml tubes. The homogenate was
incubated with 1000 U of β-glucuronidase (G7896, Sigma Chemicals, St. Louis, MO,
USA) and 40 U of sulfatase (S-9754, Sigma Chemicals) buffered in 300 μl of 0.5 M
phosphate buffer (pH 5.0) at 37°C for 45 min to digest the conjugated forms into their
free forms. After incubation, 4× extracts with 1 ml of ethyl acetate were combined with
20 μl of 2% ascorbic acid in methanol and dried in vacuum and reconstituted for HPLC
CoulArray detection (ESA, Chelmsford, MA, USA) [24]. The compounds were separated
on an Alltima C18 reverse-phase column (3 μm, 53×7 mm) (Alltech Associates Inc.,
Deerfield, IL, USA) as described by Henning et al. [24]. The eight channels of the
CoulArray detector (ESA, Chelmsford, MA, USA) were sequentially set at −60-, 20-,
100-, 180-, 260-, 340-, 420- and 500-mV potentials.
2.7. Quantitative real-time polymerase chain reaction (PCR) of DNMT1

PCR primers and fluorogenic probes were provided by TaqMan Gene Expression
Assay kit (ID: Hs00154749_m1 for DNMT1) (Applied Biosystems, Foster City, CA, USA).
The final volume of 20-μl PCR mixture contained 2 μl of cDNA template, 1 μl of 20×
primer and probe mixture, 10 μl of 2×TaqMan Universal PCR MasterMix (Applied
Biosystems) and 7 μl of nuclease-free water. PCR amplification was performed by a
7900HT Fast Real-Time System (Applied Biosystems) with the following thermal
cycling conditions: 50°C for 2 min followed by 95°C for 10min and 45 cycles of 95°C for
15 s and 60°C for 1 min. Each sample was in triplicate. In addition, each run included
no-template negative controls. The 2−(ΔΔCt) method was used to normalize the
expression of DNMT1 in each sample to GAPDH expression and to compare to the
average ΔCt value.
2.8. Statistical methods

SPSS (Version 17.0, Chicago, IL, USA) and Graph Pad Prism 4.0 (Graph Pad Software
Inc., San Diego, CA, USA) were used for statistical analyses. Mean value, median and
standard deviation (S.D.) were calculated using descriptive statistics. Comparison of
means was performed by two independent-samples t test. Differences were considered
significant if Pb.05.



Fig. 2. Concentration of total (free+conjugated) GTPs and their methyl metabolites in
tumor tissue of mice treated with green tea (means±S.D., n=5, ⁎P≤.05).
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3. Results

3.1. Tumor volume, tissue GTP content and GTP metabolism

GT prepared from commercially available tea bags contained a
mixture of GTPs as found in GT leaves. To evaluate whether brewed
GT, as consumed in the general population, inhibits prostate tumor
growth in SCID mice implanted with LAPC4 human androgen-
dependent prostate tumor cells, we replaced drinking water with
brewed GT. There was no difference in body weight between GT-
consuming and control mice (Fig. 1A). After 5 weeks, tumor volume
was inhibited significantly in GT-consuming mice. After 11 weeks,
tumor growth reached a plateau (Fig. 1B).

EGCG, 4″-O-methyl-EGCG (4″-MeEGCG), EGC, 4′-O-methyl-EGC
(4′-MeEGC) and EC were found in the tumor tissue of mice
consuming GT (Fig. 2). The identity of the 4″-MeEGCG and 4′-
MeEGC standards was confirmed by liquid chromatography/tandem
mass spectrometry analysis, and excellent correlation with the HPLC
analysis with CoulArray electrochemical detection was established.
EC, EGC and 4′-MeEGC were found mostly in the conjugated
(glucuronidated+sulfated) form (86%±4%, 75%±4% and 83%±4% of
total, respectively). EGCG and 4″-MeEGCG were present in the free
form at 68%±5% and 50%±5% of total, respectively. The total
concentration of GTPs and methyl metabolites was significantly
correlated to tumor volume (r=0.94, Pb.007). The administration of
brewed GT inhibited the gene and protein expression of DNMT1
significantly (55% and 40%, respectively; Fig. 3A,B).

3.2. GT effects on oxidative DNA and protein damage and
macrophage presence

In a preliminary study (experiment 1), we compared the level of
oxidative DNA damage in xenograft tumor tissue to prostate gland
tissue including prostate tissues from intact mice and from castrated
mice (Fig. 4A). In this experiment,we established that the ratio of 8-oxo-
dG to dG was significantly increased in LAPC4 xenograft tumor tissue
Fig. 1. Body weight (A) and tumor volume (B) of SCID mice inoculated with LAPC4
prostate tumor cells and treated with brewed green tea or water (means±S.D., n=5,
⁎P≤.05).
compared to normal prostate tissue. There was no significant difference
in oxidative DNA damage in normal tissues from castrated mice
compared to intact mice. In xenograft tumors from SCID mice
consuming brewed GT, the ratio of 8-oxo-dG to dG was significantly
decreasedby60% compared to tumors fromcontrol tumor-bearingmice
consuming plain water (Fig. 4B). In addition, we demonstrated that the
concentration of carbonyl protein as an indicator of oxidized protein
was significantly decreased by60% inGT-drinkingmice compared to the
tumor-bearing controls consuming water alone (Fig. 4C).

F4/80 staining of tumor sections also indicated the presence of
macrophages. Macrophages were distributed throughout the tumor
section in an irregular manner, mainly accumulating in areas
bordering the invasive zone. Fig. 6 (A) demonstrates an example of
a tumor from a tea-treated mouse with reduced macrophage
Fig. 3. (A) Gene expression of DNMT1 and (B) protein expression of DNMT1 in tumor
tissue of mice treated with tea or water determined by quantitative real-time PCR
(means±S.D., n=5, ⁎P≤.05).
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Fig. 4. Oxidative DNA damage (A) in xenograft LAPC4 tumor or normal prostate tissue in
intact (I) or castrated (C) mice; significant difference between tumor and prostate in intact
(♦) and castratedmice (⁎). (B) Oxidative damage in tumor tissue and (C) oxidative protein
damage in tumor tissueofmice treatedwithgreen teaorwater (means±S.D.,n=5, ⁎P≤.05).

Fig. 5. Protein expression of (A) HIF-1α and (B) VEGF in tumor tissue of mice treated
with green tea or water by Western blot and (C) microvessel density by
immunohistochemistry (means±S.D., n=5, ⁎P≤.05).
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infiltration. However, overall, there was no significant difference in
F4/80-positive macrophage marker staining demonstrated in tumors
from tea-treated and control mice.

3.3. GT effects on markers of angiogenesis

In addition to the antioxidant effects, we determined the effect of
consumption of brewed GT on markers of angiogenesis. Protein
expression of HIF-1α and VEGF in tumor tissue was significantly
decreased by 60% and 35% in mice drinking brewed GT (Fig. 5A, B).
Vessel density showed a nearly significant trend to decrease by 42% from
26±8.9 to 15.2±2.5 microvessels per field (P=.058) (Fig. 5C).

4. Discussion

Polyphenolic botanical extracts such as GT exert their effects on
tumor growth through multiple concurrent direct and indirect
mechanisms captured under the term of antioxidant effects [30]. In
this study, we demonstrated that brewed GT inhibited markers of
oxidative damage in the prostate cancer xenograft tumor tissue. In
addition, many effects are beyond those that can be characterized as
simply antioxidant effects. Pathways involved in antioxidant defense,
redox status, inflammation and methylation are closely interrelated
and interact with the multistep process of carcinogenesis [31].

Angiogenesis is a component of the inflammatory pathway
involved in tumor promotion, and tumors cannot grow without
stimulating new blood vessel formation [32]. New vessel formation is
triggered by hypoxia via stimulation of VEGF and the HIF-1α
pathways [33]. We demonstrated a significant decrease in tumor
tissue angiogenesis-related HIF-1α and VEGF protein expression and
an almost significant trend (P=.058) of decrease in microvessel
density. A possible mechanism of HIF-1α inhibition has been
described in PC-3 prostate cancer cells where 20–40 μmol of EGCG
inhibited the prolyl hydroxylation of HIF-1α, thus preventing the
interaction of HIF-1α with von Hippel–Lindau protein necessary for

image of Fig. 4
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Fig. 6. Macrophage presence in tumor tissue of mice treated with green tea (A) or water (B) by F4/80 immunohistochemistry staining (×50 magnification).
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angiogenesis stimulation [34]. The inhibition of VEGF protein
expression has been demonstrated before by other investigators in
a xenograft prostate cancer model and TRAMP mice treated with a
GTE enriched for EGCG [35,36]. However, our results are unique to
demonstrate the inhibition of these angiogenesis factors in mice
consuming brewed GT instead of drinking water.

The xenograft model is not a perfect representation of human
prostate cancer. In SCID mice, inflammatory processes, driven by
mechanisms inherent to the host-tumor immune reaction, may be
preservedbutmaybe nonresponsive toGT treatment. Although theGT
intervention did not affect macrophage density in the present study,
this does not rule out an inhibitory effect in human prostate tissue
where the variety of cells infiltrating may be different, including
different subtypes of macrophages [37]. Tumor-associated macro-
phages also have the capacity to generate ROS throughNADPHoxidase
activity and stimulate angiogenesis [38,39]. Decreasing the macro-
phage infiltration or modulating the tumor-associated macrophage
subpopulations could be another potential mechanism throughwhich
GT could lower oxidative stress and inhibit angiogenesis in tumor
tissues indirectly. This area clearly deserves more investigation, but
the design of experiments using the xenograft model will be critical in
advancing our understanding of intratumoral immune effects of GT.

The antioxidant activity of GTPs in human and animal studies has
been reviewed extensively [40,41], and there is evidence from human
intervention studies that brewed GT and GT extract supplements
exert an antioxidant activity [24,42,43]. In the present study, we
observed a significant inhibition of oxidative DNA and protein
damage in tumor tissue from mice exposed to brewed GT. While it
is possible that some of these effects were the result of a direct
chemical antioxidant activity of GTPs via electron transfer and radical
scavenging of metal ions [44], the low plasma and tissue concentra-
tions of GTPs and the presence of many other stable antioxidant
defense systems in the tissues make this unlikely [45]. In our view, it
is more likely that GTPs act through up-regulation of antioxidant
defense mechanisms via activation of the Nrf2 axis [10] and
reactivation of silenced antioxidant enzyme genes through a decrease
in DNA methylation [20]. Stage-specific alterations of DNA methyl-
transferase expression, gene specific DNA hypermethylation and also
global DNA hypomethylation have been defined in different stages of
prostate carcinogenesis in transgenic (TRAMP) mice [46]. A recently
published work by Pandey et al. showed that treatment with GTPs in
vitro caused promoter demethylation and chromatin remodeling
leading to expression of GSTP1 in human prostate cancer cells, which
had been suppressed [47].

Our results demonstrate for the first time in vivo that the
consumption of brewed GT is associated with significant inhibition
of gene and protein expression of DNMT1 in xenograft tumors. A
study by Morey Kinney et al. in transgenic TRAMP mice did not
demonstrate a decrease in DNA methylation [48], but also failed to
demonstrate inhibition of tumor progression in TRAMP mice.
Therefore, there is no conflict in the findings from the above
transgenic study and our findings. Nonetheless, further studies are
needed to investigate whether the inhibition of DNMT1 is sufficient to
reverse gene-specific DNA hypermethylation in human prostate
tissues following GT administration.

A related effect of decreasing the methylation of GTPs is the
increase in antiproliferative activity. In previous work, we established
that methylation of EGCG was associated with a decrease of
antiproliferative activity, decreased inhibition of nuclear factor-κB
activation and decreased apoptosis [49]. In the present study, 56%±6%
of EGCG and 45%±5% of EGC were found in methylated form, which
may have significantly limited their potential to inhibit tumor growth.
Similar amounts of methyl-EGCG were found in prostate tissue as
part of an ongoing phase II human intervention study in men
consuming green tea prior to prostatectomy [49]. We are currently
investigating the possibility that combinations of agents that inhibit
methylation might enhance the chemopreventive activity of green
tea in prostate carcinogenesis.

In summary, our study has shed light on potential mechanisms
through which GTPs from brewed green tea as opposed to purified or
concentrated EGCG might affect prostate carcinogenesis. In this
regard, our research attempts to recapitulate in animal models and
human studies the effects observed in epidemiological studies. It is
hoped that this translational research will lead to new approaches to
prostate cancer prevention.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jnutbio.2011.10.007.
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